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Abstract

A procedure for the extraction of extrinsic ele-
ments of dual-gate MESFET (DGMESFET) ‘is de-
scribed in this paper. It is the first time to accurately
extract the extrinsic elements of series resistance by
considering the distributed channel resistance under
the regions of two gates with the use of “end resistance
measurement” method. The extrinsic elements of ca-
pacitance and inductance are extracted by three-port
Y-matrix and Z-matrix calculation from cold measure-
ments. The developed procedure is useful for the char-
acterization of DGMESFET.

Introduction

To design a microwave circuit using DGMESFET,
an equivalent circuit at operational bias condition is re-
quired. The small-signal models [1]-[3] and large-signal
model [4] have been proposed by many authors. In
those papers, the equivalent circuit of DGMESFET is
basically composed by cascoding two single gate MES-
FETs (SGMESFET) embedded by extrinsic parasitic
elements. Fig.1 shows a typical small-signal equivalent
circuit of a coplanar DGMESFET. Since the connec-
tion between two intrinsic FETs can not be directly
measured from probes, i1t is not easy to find the an-
alytical formula to extract the intrinsic and extrinsic
elements as in the SGMESFET case [5]. In this paper,
we will describe the developed extraction procedure
for the extrinsic elements of DGMESFET.

For a DGMESFET, the values of extrinsic series
resistance can be estimated from physical modeling
[1],{6] or derived by empirical formula with the dis-
tributed channel resistance under the regions of two
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Fig.1 A small-signal equivalent circuit of DGMESFET.

gates to be neglected [2],[3]. In this paper, a circuit
model of cold DGMESFET is proposed to consider
the distributed channel resistance. The precise val-
ues of extrinsic series resistance can then be extracted
by using the “end resistance measurement” method
[7]. The extrinsic elements of capacitance and induc-
tance are extracted using three-port Y-parameter and
Z-parameter calculation from the cold measurements
with DGMESFET at forward bias and reverse bias ac-
cordingly.

Series Extrinsic Resistance
Extraction

The schematic diagram to describe the DC behav-
1or of a cold DGMESFET under forward bias is shown
in Fig.2. Five independent equations with seven un-
knowns can be acquired from the “end resistance mea-
surement” method as follows
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Fig. 2 Schematic diagram of a DGMESFET for “end resistance
measurement” method. Rg1, Ry, Bs and Ry are gatel , gate2 ,
source, and drain resistances. R.1, R are the distributed chan-
nel resitance under the regions of gatel and gate, respectively.
Ry is the bulk resitance between gatel and gate2.
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Equation 1 shows a straight line for Vy1, — Ig1s
characteristics with n; Vr as the slope and R,y + %L +
R; as the intercept point. Therefore from a set of
measurements of current I, and voltage Vi, with
floating drain terminal, the mean values of %gf can

be calculated to solve n;V7r and Ry + %1 + R; by a
least square error method. By using the same process,
(1)-(4) become the following three-port Z-parameter
expression

R
Rl]_ = Rg]_ + Tel + Rg; (6)
RcZ
Ryy =Ry + = + Ria+ Re1 + Ra, (7)
R,
Rgs = Rgz + "'3*2 + Rd> (8)

R,
Rsy = Rgl + Tl + Ria+ Reo + Rd, (9)
and (5) can be rewritten as

_ Rcl
R, = =

+ R,. (10)

Two additional equations for solving seven extrin-
sic elements of series resistance can be selected from
the following approaches

1 the relation of Ry and Rcs, Re1 = mR.s provided
the gatel and gate2 channel length ratio m is
known.

2 the value of R; + Ri2 + R.2 + Ry obtained from
Hower and Bechte method [8] by floating gate2
terminal.

3 the values of Ry and Rgy acquired from dummy
pad resistance measurement.

4 the values of R, and Ry of SGMESFET [5] pro-
vided the same device structure and processing in
DGMESFET for source and drain terminals.

Extrinsic Capacitance Extraction

Figure 3 shows the equivalent circuit of a cold
coplanar DGMESFET in which FET1 is reverse biased
in pinched-off region and FET2 is forward biased in
linear region. The imaginary part of the three-port Y-
parameter, with frequency below a few gigaherhz, can
be written as

Im(Y11) = jw(Cpg1 + 2C1), (11)
Im(Y13) = —jw(Cb1), (12)
Im(Y2s) = jw(2Cg2a + 2Cpg2), (13)
Im(Yes) = —jw(2Cy24), (14)
Im(Yss) = jw(Cpa + 2Cg24 + Cb1).  (15)

One can then solve the values of extrinsic capacitance

Cpg1,Cpga, Cpq and Cyaa.

Extrinsic Inductance Extraction

Figure 4 shows the equivalent circuit of a copla-
nar cold DGMESFET with FET1 and FET2 both
at forward bias. The real part of the three-port Z-
parameter, with frequency below a few gigahertz, can
be written as

Re(Z11) = jw(Lg1 + Ls), (16)
Re(Zzz) = jw(ng + Ls); (17)
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Fig. 3 An equivalent circuit of coplanar cold DGMESFET with
FET1 reverse biased and FET2 forward biased.
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Fig. 4 An equivalent circuit of coplanar cold DGMESFET with
FET1 and FET?2 forward biased.

RG(Z33) = jw(Ld + Ls)a (18)

Re(Zgl) - ijs. (19)
One can then solve the values of extrinsic indﬁctance
Lg1,Lga, Ly and Lg.

Measurement Results

A coplanar DGMESFET with Ly, Ly = lum
and W1, Wya = 4 x Tbum fabricated by HEXAWAVE
Co., is measured to extract the extrinsic elements. The
three-port scattering matrix of DGMESFET is mea-
sured on wafer using an automated three-port network
analyzer with associated calibration method developed

in our laboratory. Figure 5 shows the measured re-
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Fig. 5 Measured results of

, and

0.2mA and Vi, = 0V are calculated from the on-
wafer measurement of S-parameter. The results of
Im(Y11), Im(Ya2), Im(Y21) and Im(Ys3) are shown in
Fig. 6. Values of Cpg1,Cpgz, Cpg and Cp calculated
from (11)-(15) are shown in Fig.7, and values of extrin-
sic inductance Ly and Ly are shown in Fig. 8. Table 1
summaries the extraction results of extrinsic elements

of DGMESFET and the associated bias conditions.

_ OO e 2y L
o x A
T o016 Im{y33) A
% -~ -Im(y13} N ++++

— A
G 0014 Im{y23) Lt
o
a "

¥
Z oo at
S e
5 t
g€ oot o
2 wtt
+

S o008} et
g g
2 o008 0000

0.004

2 25 3 35 s 25 5
frequency (GHz}

Fig. 6 Measured results of the imaginary part of three-ort Y-
parameter , Vg, = 0V, Vg1, = Vip, and Igps = 0.2mA.
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